Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 1, Pages 159–180 (Mi fpm801)  

This article is cited in 6 scientific papers (total in 6 papers)

Associative homotopy Lie algebras and Wronskians

A. V. Kiselev

M. V. Lomonosov Moscow State University
Full-text PDF (258 kB) Citations (6)
References:
Abstract: We analyze representations of Schlessinger–Stasheff associative homotopy Lie algebras by higher-order differential operators. $W$-transformations of chiral embeddings of a complex curve related with the Toda equations into Kähler manifolds are shown to be endowed with the homotopy Lie-algebra structures. Extensions of the Wronskian determinants preserving Schlessinger–Stasheff algebras are constructed for the case of $n\geq1$ independent variables.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 1, Pages 1016–1030
DOI: https://doi.org/10.1007/s10958-007-0028-2
Bibliographic databases:
UDC: 512.81
Language: Russian
Citation: A. V. Kiselev, “Associative homotopy Lie algebras and Wronskians”, Fundam. Prikl. Mat., 11:1 (2005), 159–180; J. Math. Sci., 141:1 (2007), 1016–1030
Citation in format AMSBIB
\Bibitem{Kis05}
\by A.~V.~Kiselev
\paper Associative homotopy Lie algebras and Wronskians
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 1
\pages 159--180
\mathnet{http://mi.mathnet.ru/fpm801}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2137432}
\zmath{https://zbmath.org/?q=an:1073.18007}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 141
\issue 1
\pages 1016--1030
\crossref{https://doi.org/10.1007/s10958-007-0028-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846637697}
Linking options:
  • https://www.mathnet.ru/eng/fpm801
  • https://www.mathnet.ru/eng/fpm/v11/i1/p159
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :131
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024