Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 1, Pages 141–158 (Mi fpm800)  

Kähler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs

V. V. Konnov

Finance Academy under the Government of the Russian Federation
References:
Abstract: A nondegenerate $m$-pair $(A,\Xi)$ in an $n$-dimensional projective space $\mathbb RP_n$ consists of an $m$-plane $A$ and an $(n-m-1)$-plane $\Xi$ in $\mathbb RP_n$, which do not intersect. The set $\mathfrak N_m^n$ of all nondegenerate $m$-pairs $\mathbb RP_n$ is a $2(n-m)(n-m-1)$-dimensional, real-complex manifold. The manifold $\mathfrak N_m^n$ is the homogeneous space $\mathfrak N_m^n=\matrm{GL}(n+1,\mathbb R)/\matrm{GL}(m+1,\mathbb R)\times\matrm{GL}(n-m,\mathbb R)$ equipped with an internal Kähler structure of hyperbolic type. Therefore, the manifold $\mathfrak N_m^n$ is a hyperbolic analogue of the complex Grassmanian $\mathbb CG_{m,n}=\mathrm U(n+1)/\mathrm U(m+1)\times\mathrm U(n-m)$. In particular, the manifold of 0-pairs $\mathfrak N_0^n=\matrm{GL}(n+1,\mathbb R)/\matrm{GL}(1,\mathbb R)\times\matrm{GL}(n,\mathbb R)$ is a hyperbolic analogue of the complex projective space $\mathbb CP_n=\mathrm U(n+1)/\mathrm U(1)\times\mathrm U(n)$. Similarly to $\mathbb CP_n$, the manifold $\mathfrak N_0^n$ is a Kähler manifold of constant nonzero holomorphic sectional curvature (relative to a hyperbolic metrics). In this sense, $\mathfrak N_0^n$ is a hyperbolic spatial form. It was proved that the manifold of 0-pairs $\mathfrak N_0^n$ is globally symplectomorphic to the total space $T^*\mathbb RP_n$ of the cotangent bundle over the projective space $\mathbb RP_n$. A generalization of this result is as follows: the manifold of nondegenerate $m$-pairs $\mathfrak N_m^n$ is globally symplectomorphic to the total space $T^*\mathbb RG_{m,n}$ of the cotangent bundle over the Grassman manifold $\mathbb RG_{m,n}$ of $m$-dimensional subspaces of the space $\mathbb RP_n$. In this paper, we study the canonical Kähler structure on $\mathfrak N_m^n$. We describe two types of submanifolds in $\mathfrak N_m^n$, which are natural hyperbolic spatial forms holomorphically isometric to manifolds of 0-pairs in $\mathbb RP_{m+1}$ and in $\mathbb RP_{n-m}$, respectively. We prove that for any point of the manifold $\mathfrak N_m^n$, there exist a $2(n-m)$-parameter family of $2(m+1)$-dimensional hyperbolic spatial forms of first type and a $2(m+1)$-parameter family of $2(n-m)$-dimensional hyperbolic spatial forms of second type passing through this point. We also prove that natural hyperbolic spatial forms of first type on $\mathfrak N_m^n$ are in bijective correspondence with points of the manifold $\mathfrak N_{m+1}^n$ and natural hyperbolic spatial forms of second type on $\mathfrak N_m^n$ are in bijective correspondence with points of the manifolds $\mathfrak N_{m-1}^n$.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 1, Pages 1004–1015
DOI: https://doi.org/10.1007/s10958-007-0027-3
Bibliographic databases:
UDC: 514.76
Language: Russian
Citation: V. V. Konnov, “Kähler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs”, Fundam. Prikl. Mat., 11:1 (2005), 141–158; J. Math. Sci., 141:1 (2007), 1004–1015
Citation in format AMSBIB
\Bibitem{Kon05}
\by V.~V.~Konnov
\paper K\"ahler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 1
\pages 141--158
\mathnet{http://mi.mathnet.ru/fpm800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2137431}
\zmath{https://zbmath.org/?q=an:1073.53090}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 141
\issue 1
\pages 1004--1015
\crossref{https://doi.org/10.1007/s10958-007-0027-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846618598}
Linking options:
  • https://www.mathnet.ru/eng/fpm800
  • https://www.mathnet.ru/eng/fpm/v11/i1/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :123
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024