Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 1, Pages 135–159 (Mi fpm8)  

This article is cited in 3 scientific papers (total in 3 papers)

Limit T-spaces

E. A. Kireeva

Moscow State Pedagogical University
Full-text PDF (292 kB) Citations (3)
References:
Abstract: Let $F$ be a field of prime characteristic $p$ and let $\mathbf V_p$ be the variety of associative algebras over $F$ without unity defined by the identities $[[x,y],z]=0$ and $x^4=0$ if $p=2$ and by the identities $[[x,y],z]=0$ and $x^p=0$ if $p>2$ (here $[x,y]=xy-yx$). Let $A/V_p$ be the free algebra of countable rank of the variety $\mathbf V_p$ and let $S$ be the T-space in $A/V_p$ generated by $x_1^2x_2^2\dots x_k^2+V_2$, where $k\in\mathbb N$ if $p=2$ and by $x_1^{\alpha_1}x_2^{\alpha_2}[x_1,x_2]\dots x_{2k?1}^{\alpha_{2k-1}}x_{2k}^{\alpha_{2k}}[x_{2k?1},x_{2k}]+V_p$, where $k\in\mathbb N$ and $\alpha_1,\dots,\alpha_{2k}\in\{0,p-1\}$ if $p>2$. As is known, $S$ is not finitely generated as a T-space. In the present paper, we prove that $S$ is a limit T-space, i.e., a maximal nonfinitely generated T-space. As a corollary, we have constructed a limit T-space in the free associative $F$-algebra without unity of countable rank.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 4, Pages 540–557
DOI: https://doi.org/10.1007/s10958-008-9081-8
Bibliographic databases:
UDC: 512.552
Language: Russian
Citation: E. A. Kireeva, “Limit T-spaces”, Fundam. Prikl. Mat., 13:1 (2007), 135–159; J. Math. Sci., 152:4 (2008), 540–557
Citation in format AMSBIB
\Bibitem{Kir07}
\by E.~A.~Kireeva
\paper Limit T-spaces
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 1
\pages 135--159
\mathnet{http://mi.mathnet.ru/fpm8}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322963}
\zmath{https://zbmath.org/?q=an:1161.16017}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 4
\pages 540--557
\crossref{https://doi.org/10.1007/s10958-008-9081-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749123542}
Linking options:
  • https://www.mathnet.ru/eng/fpm8
  • https://www.mathnet.ru/eng/fpm/v13/i1/p135
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:394
    Full-text PDF :104
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024