Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 1, Pages 93–139 (Mi fpm799)  

On the geometric interpretation of solutions of a system generalizing the sine-Gordon equation

A. V. Bad'in

M. V. Lomonosov Moscow State University
References:
Abstract: We propose a geometric interpretation of solutions of the system generalizing the well-known sine-Gordon equation. We prove that to any solution of the Efimov–Poznyak system in a simply-connected domain, a $C^{3}$-smooth singular surface with given first fundamrntal bilinear form corresponds.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 1, Pages 970–1003
DOI: https://doi.org/10.1007/s10958-007-0026-4
Bibliographic databases:
UDC: 514.75
Language: Russian
Citation: A. V. Bad'in, “On the geometric interpretation of solutions of a system generalizing the sine-Gordon equation”, Fundam. Prikl. Mat., 11:1 (2005), 93–139; J. Math. Sci., 141:1 (2007), 970–1003
Citation in format AMSBIB
\Bibitem{Bad05}
\by A.~V.~Bad'in
\paper On the geometric interpretation of solutions of a~system generalizing the sine-Gordon equation
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 1
\pages 93--139
\mathnet{http://mi.mathnet.ru/fpm799}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2137430}
\zmath{https://zbmath.org/?q=an:1073.35190}
\elib{https://elibrary.ru/item.asp?id=9025104}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 141
\issue 1
\pages 970--1003
\crossref{https://doi.org/10.1007/s10958-007-0026-4}
\elib{https://elibrary.ru/item.asp?id=13534586}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846630289}
Linking options:
  • https://www.mathnet.ru/eng/fpm799
  • https://www.mathnet.ru/eng/fpm/v11/i1/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:747
    Full-text PDF :252
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024