|
Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 4, Pages 235–241
(Mi fpm790)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On embeddings of some quotient algebras of free sums of Lie algebras
A. L. Shmel'kin, A. V. Syrtsov M. V. Lomonosov Moscow State University
Abstract:
Let $(B_i)_{i\in I}$ be a set of Lie algebras; let $X$ be a free Lie algebra; let $F=\Bigl(\,\mathop{\sum\limits_{i\in I}}\nolimits^{*}B_i\Bigr)*X$ be their free sum; let $R$ be an ideal of $F$ such that $R\cap B_i=1$ ($i\in I$); let $V$ be a variety of Lie algebras such that $\mathbf{V}(R)$ is an ideal of $F$. Under some restrictions, we construct an embedding of $F/\mathbf{V}(R)$ into the verbal wreath product of a free algebra of the variety $V$ with $F/R$.
Citation:
A. L. Shmel'kin, A. V. Syrtsov, “On embeddings of some quotient algebras of free sums of Lie algebras”, Fundam. Prikl. Mat., 10:4 (2004), 235–241; J. Math. Sci., 140:2 (2007), 340–344
Linking options:
https://www.mathnet.ru/eng/fpm790 https://www.mathnet.ru/eng/fpm/v10/i4/p235
|
|