Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 2, Pages 471–489 (Mi fpm78)  

This article is cited in 1 scientific paper (total in 1 paper)

Serial Krull–Schmidt rings and pure-injective modules

G. E. Puninskii

Russian State Social University
Full-text PDF (994 kB) Citations (1)
References:
Abstract: A ring is called Krull–Schmidt if every finitely presented module over it can be decomposed into direct sum of modules with local endomorphism rings. The serial Krull–Schmidt rings are described as rings with the weak invariance condition. The classification of indecomposable pure-injective modules over uniserial ring is simplified and criteria for the existence of superdecomposable pure-injective module is given for semi-invariant case. Let $T$ be the theory of all modules over effectively given invariant uniserial ring $R$ with infinite residue skew field. It is shown that $T$ is decidable if the question of invertibility of element from $R$ can be solved effectively.
Received: 01.02.1995
Bibliographic databases:
Language: Russian
Citation: G. E. Puninskii, “Serial Krull–Schmidt rings and pure-injective modules”, Fundam. Prikl. Mat., 1:2 (1995), 471–489
Citation in format AMSBIB
\Bibitem{Pun95}
\by G.~E.~Puninskii
\paper Serial Krull--Schmidt rings and pure-injective modules
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 471--489
\mathnet{http://mi.mathnet.ru/fpm78}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1790976}
\zmath{https://zbmath.org/?q=an:0878.16006}
Linking options:
  • https://www.mathnet.ru/eng/fpm78
  • https://www.mathnet.ru/eng/fpm/v1/i2/p471
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024