Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 3, Pages 181–197 (Mi fpm777)  

This article is cited in 12 scientific papers (total in 12 papers)

Problems in algebra inspired by universal algebraic geometry

B. I. Plotkin

Hebrew University of Jerusalem
References:
Abstract: Let $\Theta$ be a variety of algebras. In every variety $\Theta$ and every algebra $H$ from $\Theta$ one can consider algebraic geometry in $\Theta$ over $H$. We also consider a special categorical invariant $K_\Theta(H)$ of this geometry. The classical algebraic geometry deals with the variety $\Theta=\mathrm{Com-}P$ of all associative and commutative algebras over the ground field of constants $P$. An algebra $H$ in this setting is an extension of the ground field $P$. Geometry in groups is related to the varieties $\mathrm{Grp}$ and $\mathrm{Grp-}G$, where $G$ is a group of constants. The case $\mathrm{Grp-}F$, where $F$ is a free group, is related to Tarski's problems devoted to logic of a free group. The described general insight on algebraic geometry in different varieties of algebras inspires some new problems in algebra and algebraic geometry. The problems of such kind determine, to a great extent, the content of universal algebraic geometry. For example, a general and natural problem is: When do algebras $H_1$ and $H_2$ have the same geometry? Or more specifically, what are the conditions on algebras from a given variety $\Theta$ that provide the coincidence of their algebraic geometries? We consider two variants of coincidence: 1) $K_\Theta(H_1)$ and $K_\Theta(H_2)$ are isomorphic; 2) these categories are equivalent. This problem is closely connected with the following general algebraic problem. Let $\Theta^0$ be the category of all algebras $W=W(X)$ free in $\Theta$, where $X$ is finite. Consider the groups of automorphisms $\operatorname{Aut}(\Theta^0)$ for different varieties $\Theta$ and also the groups of autoequivalences of $\Theta^0$. The problem is to describe these groups for different $\Theta$.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 4, Pages 6780–6791
DOI: https://doi.org/10.1007/s10958-006-0390-5
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: B. I. Plotkin, “Problems in algebra inspired by universal algebraic geometry”, Fundam. Prikl. Mat., 10:3 (2004), 181–197; J. Math. Sci., 139:4 (2006), 6780–6791
Citation in format AMSBIB
\Bibitem{Plo04}
\by B.~I.~Plotkin
\paper Problems in algebra inspired by universal algebraic geometry
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 3
\pages 181--197
\mathnet{http://mi.mathnet.ru/fpm777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2123349}
\zmath{https://zbmath.org/?q=an:1072.08002}
\elib{https://elibrary.ru/item.asp?id=9068315}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 139
\issue 4
\pages 6780--6791
\crossref{https://doi.org/10.1007/s10958-006-0390-5}
\elib{https://elibrary.ru/item.asp?id=14134984}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750522806}
Linking options:
  • https://www.mathnet.ru/eng/fpm777
  • https://www.mathnet.ru/eng/fpm/v10/i3/p181
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:502
    Full-text PDF :178
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024