Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 3, Pages 23–71 (Mi fpm772)  

This article is cited in 2 scientific papers (total in 2 papers)

Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences

E. V. Gorbatov

M. V. Lomonosov Moscow State University
Full-text PDF (450 kB) Citations (2)
References:
Abstract: Standard bases of ideals of the polynomial ring $R[X]=R[x_1,\dots,x_k]$ over a commutative Artinian chain ring $R$ that are concordant with the norm on $R$ have been investigated by D. A. Mikhailov, A. A. Nechaev, and the author. In this paper we continue this investigation. We introduce a new order on terms and a new reduction algorithm, using the coordinate decomposition of elements from $R$. We prove that any ideal has a unique reduced (in terms of this algorithm) standard basis. We solve some classical computational problems: the construction of a set of coset representatives, the finding of a set of generators of the syzygy module, the evaluation of ideal quotients and intersections, and the elimination problem. We construct an algorithm testing the cyclicity of an LRS-family $L_R(I)$, which is a generalization of known results to the multivariate case. We present new conditions determining whether a Ferre diagram $\mathcal F$ and a full system of $\mathcal F$-monic polynomials form a shift register. On the basis of these results, we construct an algorithm for lifting a reduced Gröbner basis of a monic ideal to a standard basis with the same cardinality.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 4, Pages 6672–6707
DOI: https://doi.org/10.1007/s10958-006-0384-3
Bibliographic databases:
UDC: 512.714+519.725
Language: Russian
Citation: E. V. Gorbatov, “Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences”, Fundam. Prikl. Mat., 10:3 (2004), 23–71; J. Math. Sci., 139:4 (2006), 6672–6707
Citation in format AMSBIB
\Bibitem{Gor04}
\by E.~V.~Gorbatov
\paper Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 3
\pages 23--71
\mathnet{http://mi.mathnet.ru/fpm772}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2123343}
\zmath{https://zbmath.org/?q=an:1084.68143}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 139
\issue 4
\pages 6672--6707
\crossref{https://doi.org/10.1007/s10958-006-0384-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750520531}
Linking options:
  • https://www.mathnet.ru/eng/fpm772
  • https://www.mathnet.ru/eng/fpm/v10/i3/p23
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :420
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024