Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 3, Pages 245–254 (Mi fpm771)  

This article is cited in 1 scientific paper (total in 1 paper)

An interlacing theorem for matrices whose graph is a given tree

C.-M. da Fonseca

University of Coimbra
Full-text PDF (138 kB) Citations (1)
References:
Abstract: Let $A$ and $B$ be $(n\times n)$-matrices. For an index set $S\subset\{1,\ldots,n\}$, denote by $A(S)$ the principal submatrix that lies in the rows and columns indexed by $S$. Denote by $S'$ the complement of $S$ and define $\eta(A,B)=\sum\limits_S\det A(S)\det B(S')$, where the summation is over all subsets of $\{1,\ldots,n\}$ and, by convention, $\det A(\varnothing)=\det B(\varnothing)=1$. C. R. Johnson conjectured that if $A$ and $B$ are Hermitian and $A$ is positive semidefinite, then the polynomial $\eta(\lambda A,-B)$ has only real roots. G. Rublein and R. B. Bapat proved that this is true for $n\leq3$. Bapat also proved this result for any $n$ with the condition that both $A$ and $B$ are tridiagonal. In this paper, we generalize some little-known results concerning the characteristic polynomials and adjacency matrices of trees to matrices whose graph is a given tree and prove the conjecture for any $n$ under the additional assumption that both $A$ and $B$ are matrices whose graph is a tree.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 4, Pages 6823–6830
DOI: https://doi.org/10.1007/s10958-006-0394-1
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: C. da Fonseca, “An interlacing theorem for matrices whose graph is a given tree”, Fundam. Prikl. Mat., 10:3 (2004), 245–254; J. Math. Sci., 139:4 (2006), 6823–6830
Citation in format AMSBIB
\Bibitem{Da 04}
\by C.~da Fonseca
\paper An interlacing theorem for matrices whose graph is a~given tree
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 3
\pages 245--254
\mathnet{http://mi.mathnet.ru/fpm771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2123353}
\zmath{https://zbmath.org/?q=an:1068.05017}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 139
\issue 4
\pages 6823--6830
\crossref{https://doi.org/10.1007/s10958-006-0394-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750510693}
Linking options:
  • https://www.mathnet.ru/eng/fpm771
  • https://www.mathnet.ru/eng/fpm/v10/i3/p245
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :114
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024