Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 2, Pages 225–238 (Mi fpm767)  

This article is cited in 1 scientific paper (total in 1 paper)

On pureness in Abelian groups

M. A. Turmanov
Full-text PDF (189 kB) Citations (1)
References:
Abstract: Torsion-free Abelian groups $G$ and $H$ are called quasi-equal ($G\approx H$) if $\lambda G\subset H\subset G$ for a certain natural number $\lambda$. It is known (see [3]) that the quasi-equality of torsion-free Abelian groups can be represented as the equality in an appropriate factor category. Thus while dealing with certain group properties it is usual to prove that the property under consideration is preserved under the transition to a quasi-equal group. This trick is especially frequently used when the author investigates module properties of Abelian groups, here a group is considered as a left module over its endomorphism ring. On the other hand, an actual problem in the Abelian group theory is a problem of investigation of pureness in the category of Abelian groups (see [1]). We consider the pureness introduced by P. Cohn [5] for Abelian groups as modules over their endomorphism rings. The feature of the investigation of the properties of pureness for the Abelian group $G$ as the module $_{E(G)}G$ lies in the fact that this is a more general situation than the investigation of pureness for a unitary module over an arbitrary ring $R$ with the identity element. Indeed, if $_R M$ is an arbitrary unitary left module and $M^+$ is its Abelian group, then each element from $R$ can be identified with an appropriate endomorphism from the ring $E(M^+)$ under the canonical ring homomorphism $R\to E(M^+)$. Then it holds that if $_{E(M^+)}N$ is a pure submodule in $_{E(M^+)}M^+$, then $_R N$ is a pure submodule in $_R M$. In the present paper the interrelations between pureness, servantness, and quasi-decompositions for Abelian torsion-free groups of finite rank will be investigated.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 6, Pages 5336–5345
DOI: https://doi.org/10.1007/s10958-006-0298-0
Bibliographic databases:
UDC: 512.541
Language: Russian
Citation: M. A. Turmanov, “On pureness in Abelian groups”, Fundam. Prikl. Mat., 10:2 (2004), 225–238; J. Math. Sci., 137:6 (2006), 5336–5345
Citation in format AMSBIB
\Bibitem{Tur04}
\by M.~A.~Turmanov
\paper On pureness in Abelian groups
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 2
\pages 225--238
\mathnet{http://mi.mathnet.ru/fpm767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2113047}
\zmath{https://zbmath.org/?q=an:1073.20043}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 137
\issue 6
\pages 5336--5345
\crossref{https://doi.org/10.1007/s10958-006-0298-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747137272}
Linking options:
  • https://www.mathnet.ru/eng/fpm767
  • https://www.mathnet.ru/eng/fpm/v10/i2/p225
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :134
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024