Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 1, Pages 243–253 (Mi fpm761)  

This article is cited in 4 scientific papers (total in 4 papers)

On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions

A. Sergyeyev

Silesian University in Opava
Full-text PDF (153 kB) Citations (4)
References:
Abstract: We generalize earlier results of Fokas and Liu and find all locally analytic $(1+1)$-dimensional evolution equations of order $n$ that admit an $N$-shock-type solution with $N\leq n+1$. For this, we develop a refinement of the technique from our earlier work, where we completely characterized all $(1+1)$-dimensional evolution systems $\boldsymbol{u}_t=\boldsymbol{F}(x,t,\boldsymbol{u},\partial\boldsymbol{u}/\partial x,\ldots,\partial^n\boldsymbol{u}/\partial x^n)$ that are conditionally invariant under a given generalized (Lie–Bäcklund) vector field $\boldsymbol{Q}(x,t,\boldsymbol{u},\partial\boldsymbol{u}/\partial x,\ldots,\partial^k\boldsymbol{u}/\partial x^k)\partial/\partial\boldsymbol{u}$ under the assumption that the system of ODEs $\boldsymbol{Q}=0$ is totally nondegenerate. Every such conditionally invariant evolution system admits a reduction to a system of ODEs in $t$, thus being a nonlinear counterpart to quasi-exactly solvable models in quantum mechanics.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 6, Pages 4392–4400
DOI: https://doi.org/10.1007/s10958-006-0232-5
Bibliographic databases:
UDC: 517.95+514.763.85
Language: Russian
Citation: A. Sergyeyev, “On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions”, Fundam. Prikl. Mat., 10:1 (2004), 243–253; J. Math. Sci., 136:6 (2006), 4392–4400
Citation in format AMSBIB
\Bibitem{Ser04}
\by A.~Sergyeyev
\paper On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 1
\pages 243--253
\mathnet{http://mi.mathnet.ru/fpm761}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120158}
\zmath{https://zbmath.org/?q=an:1080.35091}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 136
\issue 6
\pages 4392--4400
\crossref{https://doi.org/10.1007/s10958-006-0232-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745675534}
Linking options:
  • https://www.mathnet.ru/eng/fpm761
  • https://www.mathnet.ru/eng/fpm/v10/i1/p243
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :109
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024