Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 1, Pages 183–237 (Mi fpm758)  

This article is cited in 7 scientific papers (total in 7 papers)

Classes of Maxwell spaces that admit subgroups of the Poincaré group

M. A. Parinov

Ivanovo State University
Full-text PDF (463 kB) Citations (7)
References:
Abstract: A Maxwell space is a triple $(M,g,F)$, where $M$ is the four-dimensional Minkowski space or a domain in it, $g$ is a pseudo-Euclidean metric on $M$, and $F$ is a closed exterior 2-form on $M$. In this paper, we give an exhaustive description of classes of Maxwell spaces that admit subgroups of the Poincaré group. Representatives of all classes are constructed.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 6, Pages 4419–4458
DOI: https://doi.org/10.1007/s10958-006-0235-2
Bibliographic databases:
UDC: 514.83+514.7
Language: Russian
Citation: M. A. Parinov, “Classes of Maxwell spaces that admit subgroups of the Poincaré group”, Fundam. Prikl. Mat., 10:1 (2004), 183–237; J. Math. Sci., 136:6 (2006), 4419–4458
Citation in format AMSBIB
\Bibitem{Par04}
\by M.~A.~Parinov
\paper Classes of Maxwell spaces that admit subgroups of the Poincar\'e group
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 1
\pages 183--237
\mathnet{http://mi.mathnet.ru/fpm758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119756}
\zmath{https://zbmath.org/?q=an:1077.83026}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 136
\issue 6
\pages 4419--4458
\crossref{https://doi.org/10.1007/s10958-006-0235-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745669967}
Linking options:
  • https://www.mathnet.ru/eng/fpm758
  • https://www.mathnet.ru/eng/fpm/v10/i1/p183
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :120
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024