Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2004, Volume 10, Issue 1, Pages 57–165 (Mi fpm756)  

This article is cited in 2 scientific papers (total in 2 papers)

Methods of geometry of differential equations in analysis of integrable models of field theory

A. V. Kiselevab

a Ivanovo State Power University
b Lecce University
Full-text PDF (851 kB) Citations (2)
References:
Abstract: In this paper, we investigate algebraic and geometric properties of hyperbolic Toda equations $u_{xy}=\exp(Ku)$ associated with nondegenerate symmetrizable matrices $K$. A hierarchy of analogues of the potential modified Korteweg"– de Vries equation $u_t=u_{xxx}+u_x^3$ is constructed and its relationship with the hierarchy for the Korteweg– de Vries equation $T_t=T_{xxx}+TT_x$ is established. Group-theoretic structures for the dispersionless $(2+1)$-dimensional Toda equation $u_{xy}=\exp(-u_{zz})$ are obtained. Geometric properties of the multi-component nonlinear Schrödinger equation type systems $\Psi_t=\boldsymbol i\Psi_{xx}+\boldsymbol if(|\Psi|)\Psi$ (multi-soliton complexes) are described.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 6, Pages 4295–4377
DOI: https://doi.org/10.1007/s10958-006-0229-0
Bibliographic databases:
UDC: 517.957+514.763.85
Language: Russian
Citation: A. V. Kiselev, “Methods of geometry of differential equations in analysis of integrable models of field theory”, Fundam. Prikl. Mat., 10:1 (2004), 57–165; J. Math. Sci., 136:6 (2006), 4295–4377
Citation in format AMSBIB
\Bibitem{Kis04}
\by A.~V.~Kiselev
\paper Methods of geometry of differential equations in analysis of integrable models of field theory
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 1
\pages 57--165
\mathnet{http://mi.mathnet.ru/fpm756}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119753}
\zmath{https://zbmath.org/?q=an:1074.37033}
\elib{https://elibrary.ru/item.asp?id=9068295}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 136
\issue 6
\pages 4295--4377
\crossref{https://doi.org/10.1007/s10958-006-0229-0}
\elib{https://elibrary.ru/item.asp?id=14654307}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745663333}
Linking options:
  • https://www.mathnet.ru/eng/fpm756
  • https://www.mathnet.ru/eng/fpm/v10/i1/p57
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:540
    Full-text PDF :212
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024