Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2003, Volume 9, Issue 3, Pages 133–144 (Mi fpm739)  

Sections of a differential spectrum and factorization-free computations

A. I. Ovchinnikov

M. V. Lomonosov Moscow State University
References:
Abstract: We construct sections of a differential spectrum using only localization and projective limits. For this purpose we introduce a special form of a multiplicative system generated by one differential polynomial and call it $D$-localization. Owing to this technique one can construct sections of a differential spectrum of a differential ring $\mathcal R$ without computation of $\operatorname{diffspec}\mathcal R$. We compare our construction with Kovacic's structure sheaf and with the results obtained by Keigher. We show how to compute sections of factor-rings of rings of differential polynomials. All computations in this paper are factorization-free.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 135, Issue 5, Pages 3355–3362
DOI: https://doi.org/10.1007/s10958-006-0165-z
Bibliographic databases:
UDC: 512.628.2+512.732.2+512.667.5+512.711+512.714+512.715
Language: Russian
Citation: A. I. Ovchinnikov, “Sections of a differential spectrum and factorization-free computations”, Fundam. Prikl. Mat., 9:3 (2003), 133–144; J. Math. Sci., 135:5 (2006), 3355–3362
Citation in format AMSBIB
\Bibitem{Ovc03}
\by A.~I.~Ovchinnikov
\paper Sections of a~differential spectrum and factorization-free computations
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 3
\pages 133--144
\mathnet{http://mi.mathnet.ru/fpm739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2094335}
\zmath{https://zbmath.org/?q=an:1073.12004}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 135
\issue 5
\pages 3355--3362
\crossref{https://doi.org/10.1007/s10958-006-0165-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744757330}
Linking options:
  • https://www.mathnet.ru/eng/fpm739
  • https://www.mathnet.ru/eng/fpm/v9/i3/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :92
    References:37
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024