Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2003, Volume 9, Issue 3, Pages 111–123 (Mi fpm737)  

This article is cited in 1 scientific paper (total in 1 paper)

Conjugation properties in incidence algebras

V. E. Marenich

M. V. Lomonosov Moscow State University
Full-text PDF (180 kB) Citations (1)
References:
Abstract: Incidence algebras can be regarded as a generalization of full matrix algebras. We present some conjugation properties for incidence functions. The list of results is as follows: a criterion for a convex-diagonal function $f$ to be conjugated to the diagonal function $fe$; conditions under which the conjugacy $f\sim Ce+\zeta_{\lessdot}$ holds (the function $Ce+\zeta_{\lessdot}$ may be thought of as an analog for a Jordan box from matrix theory); a proof of the conjugation of two functions $\zeta_<$ and $\zeta_{\lessdot}$ for partially ordered sets that satisfy the conditions mentioned above; an example of a partially ordered set for which the conjugacy $\zeta_<\sim \zeta_{\lessdot}$ does not hold. These results involve conjugation criteria for convex-diagonal functions of some partially ordered sets.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 135, Issue 5, Pages 3341–3349
DOI: https://doi.org/10.1007/s10958-006-0163-1
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: V. E. Marenich, “Conjugation properties in incidence algebras”, Fundam. Prikl. Mat., 9:3 (2003), 111–123; J. Math. Sci., 135:5 (2006), 3341–3349
Citation in format AMSBIB
\Bibitem{Mar03}
\by V.~E.~Marenich
\paper Conjugation properties in incidence algebras
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 3
\pages 111--123
\mathnet{http://mi.mathnet.ru/fpm737}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2094333}
\zmath{https://zbmath.org/?q=an:1071.06002}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 135
\issue 5
\pages 3341--3349
\crossref{https://doi.org/10.1007/s10958-006-0163-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744777165}
Linking options:
  • https://www.mathnet.ru/eng/fpm737
  • https://www.mathnet.ru/eng/fpm/v9/i3/p111
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :118
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024