Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2003, Volume 9, Issue 3, Pages 213–228 (Mi fpm732)  

Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gröbner basis method

I. Yu. Tchoupaeva

M. V. Lomonosov Moscow State University
References:
Abstract: Some geometric theorems can be stated in coordinate-free form as polynomials in Grassman algebra and can be proven by the anticommutative Gröbner basis method. In this article, we analyze some properties of both sets of hypotheses and conclusions of the theorem.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 135, Issue 5, Pages 3409–3419
DOI: https://doi.org/10.1007/s10958-006-0170-2
Bibliographic databases:
UDC: 512.64+512.715
Language: Russian
Citation: I. Yu. Tchoupaeva, “Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gröbner basis method”, Fundam. Prikl. Mat., 9:3 (2003), 213–228; J. Math. Sci., 135:5 (2006), 3409–3419
Citation in format AMSBIB
\Bibitem{Tch03}
\by I.~Yu.~Tchoupaeva
\paper Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 3
\pages 213--228
\mathnet{http://mi.mathnet.ru/fpm732}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2094340}
\zmath{https://zbmath.org/?q=an:1073.68098}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 135
\issue 5
\pages 3409--3419
\crossref{https://doi.org/10.1007/s10958-006-0170-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744732731}
Linking options:
  • https://www.mathnet.ru/eng/fpm732
  • https://www.mathnet.ru/eng/fpm/v9/i3/p213
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024