Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 2, Pages 553–556 (Mi fpm72)  

This article is cited in 2 scientific papers (total in 2 papers)

Short communications

Binomial presentation of linear recurring sequences

V. L. Kurakin
Full-text PDF (166 kB) Citations (2)
References:
Abstract: It is proved that any linear recurring sequence over commutative local Artinian ring $R$ can be presented as a linear combination of binomial sequences over some Galois extension $S$ of $R$. If the roots of the binomial sequences belong to the fixed coordinate set of $S$, then this presentation is unique.
Received: 01.01.1995
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. L. Kurakin, “Binomial presentation of linear recurring sequences”, Fundam. Prikl. Mat., 1:2 (1995), 553–556
Citation in format AMSBIB
\Bibitem{Kur95}
\by V.~L.~Kurakin
\paper Binomial presentation of linear recurring sequences
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 553--556
\mathnet{http://mi.mathnet.ru/fpm72}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1790984}
\zmath{https://zbmath.org/?q=an:0872.11010}
Linking options:
  • https://www.mathnet.ru/eng/fpm72
  • https://www.mathnet.ru/eng/fpm/v1/i2/p553
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024