Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2003, Volume 9, Issue 1, Pages 113–148 (Mi fpm717)  

This article is cited in 1 scientific paper (total in 1 paper)

Hopf algebras of linear recurring sequences over rings and modules

V. L. Kurakin
Full-text PDF (352 kB) Citations (1)
References:
Abstract: The module of linear recurring sequences over a commutative ring $R$ can be considered as a Hopf algebra dual to the polynomial Hopf algebra over $R$. Under this approach, some notions and operations from the Hopf algebra theory have an interesting interpretation in terms of linear recurring sequences. Generalizations are also considered: linear recurring bisequences, sequences over modules, and $k$-sequences.
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 128, Issue 6, Pages 3402–3427
DOI: https://doi.org/10.1007/s10958-005-0279-8
Bibliographic databases:
UDC: 512.667.7+511.216
Language: Russian
Citation: V. L. Kurakin, “Hopf algebras of linear recurring sequences over rings and modules”, Fundam. Prikl. Mat., 9:1 (2003), 113–148; J. Math. Sci., 128:6 (2005), 3402–3427
Citation in format AMSBIB
\Bibitem{Kur03}
\by V.~L.~Kurakin
\paper Hopf algebras of linear recurring sequences over rings and modules
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 1
\pages 113--148
\mathnet{http://mi.mathnet.ru/fpm717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2072623}
\zmath{https://zbmath.org/?q=an:1073.16031}
\elib{https://elibrary.ru/item.asp?id=9068255}
\transl
\jour J. Math. Sci.
\yr 2005
\vol 128
\issue 6
\pages 3402--3427
\crossref{https://doi.org/10.1007/s10958-005-0279-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22544469728}
Linking options:
  • https://www.mathnet.ru/eng/fpm717
  • https://www.mathnet.ru/eng/fpm/v9/i1/p113
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :236
    References:48
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024