Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2003, Volume 9, Issue 1, Pages 3–18 (Mi fpm708)  

On disjoint sums in the lattice of linear topologies

V. I. Arnautov, K. M. Filippov

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
References:
Abstract: Let $M$ be a vector space over a skew-field equipped with the discrete topology, $\mathcal L(M)$ be the lattice of all linear topologies on $M$ ordered by inclusion, and $\tau_*,\tau_0,\tau_1\in\mathcal L(M)$. We write $\tau_1=\tau_*\sqcup\tau_0$ or say that $\tau_1$ is a disjoint sum of $\tau_*$ and $\tau_0$ if $\tau_1=\inf\{\tau_0,\tau_*\}$ and $\sup\{\tau_0,\tau_*\}$ is the discrete topology. Given $\tau_1,\tau_0\in\mathcal L(M)$, we say that $\tau_0$ is a disjoint summand of $\tau_1$ if $\tau_1=\tau_*\sqcup\tau_0$ for a certain $\tau_*\in\mathcal L(M)$. Some necessary and some sufficient conditions are proved for $\tau_0$ to be a disjoint summand of $\tau_1$.
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 128, Issue 6, Pages 3335–3344
DOI: https://doi.org/10.1007/s10958-005-0270-4
Bibliographic databases:
UDC: 512.556.5
Language: Russian
Citation: V. I. Arnautov, K. M. Filippov, “On disjoint sums in the lattice of linear topologies”, Fundam. Prikl. Mat., 9:1 (2003), 3–18; J. Math. Sci., 128:6 (2005), 3335–3344
Citation in format AMSBIB
\Bibitem{ArnFil03}
\by V.~I.~Arnautov, K.~M.~Filippov
\paper On disjoint sums in the lattice of linear topologies
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/fpm708}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2072614}
\zmath{https://zbmath.org/?q=an:1073.54002}
\transl
\jour J. Math. Sci.
\yr 2005
\vol 128
\issue 6
\pages 3335--3344
\crossref{https://doi.org/10.1007/s10958-005-0270-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22544477888}
Linking options:
  • https://www.mathnet.ru/eng/fpm708
  • https://www.mathnet.ru/eng/fpm/v9/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024