Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 4, Pages 1239–1243 (Mi fpm685)  

This article is cited in 2 scientific papers (total in 2 papers)

Short communications

Hilbert's transformation and $A$-integral

Anter Ali Alsayad

M. V. Lomonosov Moscow State University
Full-text PDF (137 kB) Citations (2)
References:
Abstract: We prove that if $g$ is a bounded function, $g\in L^p(\mathbb R)$, $p\ge1$, its Hilbert's transformation $\tilde g$ is also a bounded function, and $f(x)\in L(\mathbb R)$, then $\tilde fg$ is an $A$-integrable function on $\mathbb R$ and
$$ (A)\!\int\limits_{\mathbb R}\tilde fg\,dx =-(L)\!\int\limits_{\mathbb R}f\tilde g\,dx. $$
Received: 01.06.1997
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: Anter Ali Alsayad, “Hilbert's transformation and $A$-integral”, Fundam. Prikl. Mat., 8:4 (2002), 1239–1243
Citation in format AMSBIB
\Bibitem{Ant02}
\by Anter Ali Alsayad
\paper Hilbert's transformation and $A$-integral
\jour Fundam. Prikl. Mat.
\yr 2002
\vol 8
\issue 4
\pages 1239--1243
\mathnet{http://mi.mathnet.ru/fpm685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1972590}
\zmath{https://zbmath.org/?q=an:1028.44001}
Linking options:
  • https://www.mathnet.ru/eng/fpm685
  • https://www.mathnet.ru/eng/fpm/v8/i4/p1239
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:485
    Full-text PDF :158
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024