|
Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 4, Pages 1239–1243
(Mi fpm685)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short communications
Hilbert's transformation and $A$-integral
Anter Ali Alsayad M. V. Lomonosov Moscow State University
Abstract:
We prove that if $g$ is a bounded function, $g\in L^p(\mathbb R)$, $p\ge1$, its Hilbert's transformation $\tilde g$ is also a bounded function, and $f(x)\in L(\mathbb R)$, then $\tilde fg$ is an $A$-integrable function on $\mathbb R$ and
$$
(A)\!\int\limits_{\mathbb R}\tilde fg\,dx
=-(L)\!\int\limits_{\mathbb R}f\tilde g\,dx.
$$
Received: 01.06.1997
Citation:
Anter Ali Alsayad, “Hilbert's transformation and $A$-integral”, Fundam. Prikl. Mat., 8:4 (2002), 1239–1243
Linking options:
https://www.mathnet.ru/eng/fpm685 https://www.mathnet.ru/eng/fpm/v8/i4/p1239
|
Statistics & downloads: |
Abstract page: | 485 | Full-text PDF : | 158 | References: | 70 | First page: | 1 |
|