Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 2, Pages 523–527 (Mi fpm65)  

This article is cited in 2 scientific papers (total in 2 papers)

Short communications

The Nagata–Higman theorem for semirings

A. Ya. Belov

House of scientific and technical work of youth
Full-text PDF (223 kB) Citations (2)
References:
Abstract: This paper contains the proof of the Nagata–Higman theorem for semirings (with non-commutative addition in general). The main results are the following:
Theorem. Let $A$ be an $l$-generated semiring with commutative addition in which the identity $x^{m}=0$ is satisfied. Then the nilpotency index of $A$ is not greater than $2l^{m+1}m^{3}$.
Nagata–Higman theorem for general semirings. If an $l$-generated semiring satisfies the identity $x^{m}=0$ than every word in it of length greater than $m^{m}\cdot2l^{m+1}m^{3}+ m$ is zero.
Received: 01.02.1995
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Ya. Belov, “The Nagata–Higman theorem for semirings”, Fundam. Prikl. Mat., 1:2 (1995), 523–527
Citation in format AMSBIB
\Bibitem{Bel95}
\by A.~Ya.~Belov
\paper The Nagata--Higman theorem for semirings
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 523--527
\mathnet{http://mi.mathnet.ru/fpm65}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1790979}
\zmath{https://zbmath.org/?q=an:0866.16026}
Linking options:
  • https://www.mathnet.ru/eng/fpm65
  • https://www.mathnet.ru/eng/fpm/v1/i2/p523
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024