Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 151–169 (Mi fpm639)  

This article is cited in 2 scientific papers (total in 2 papers)

Impulse control of Liapunov exponents. I

D. M. Olenchikov

Udmurt State University
Full-text PDF (918 kB) Citations (2)
References:
Abstract: Definition of solution of the system $\dot x=\delta(t)A(t)x$, where $\delta(t)$ is Dirac's delta-function, is introduced by means of non-standard analysis methods.
Received: 01.07.1997
Bibliographic databases:
UDC: 517.977
Language: Russian
Citation: D. M. Olenchikov, “Impulse control of Liapunov exponents. I”, Fundam. Prikl. Mat., 8:1 (2002), 151–169
Citation in format AMSBIB
\Bibitem{Ole02}
\by D.~M.~Olenchikov
\paper Impulse control of Liapunov exponents.~I
\jour Fundam. Prikl. Mat.
\yr 2002
\vol 8
\issue 1
\pages 151--169
\mathnet{http://mi.mathnet.ru/fpm639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1920444}
\zmath{https://zbmath.org/?q=an:1056.34004}
Linking options:
  • https://www.mathnet.ru/eng/fpm639
  • https://www.mathnet.ru/eng/fpm/v8/i1/p151
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :119
    References:63
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024