Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 141–150 (Mi fpm638)  

This article is cited in 1 scientific paper (total in 1 paper)

On lower bound of the norm of integral convolution operator

E. D. Nursultanov, K. S. Saidahmetov

Institute of Applied Mathematics National Academy of Sciences of Kazakhstan
Full-text PDF (300 kB) Citations (1)
References:
Abstract: We study the lower bound problem for the norm of integral convolution operator. We prove that if $1<p\leq q<+\infty$, $K(x) \geq 0\ \forall x\in\mathbb R^n$ and the operator
$$ (Af)(x)=\int_{\mathbb R^n}K(x-y)f(y)\,dy=K*f $$
is a bounded operator from $L_p$ to $L_q$, then there exists a constant $C(p,q,n)$ such that
$$ C\sup_{e\in Q(C)}\frac{1}{|e|^{1/p-1/q}} \int_e K(x)\,dx\leq\|A\|_{L_p\to L_q}. $$
Here $Q(C)$ is the set of all Lebesgue measurable sets of finite measure that satisfy the condition $|e+e|\leq C\cdot|e|$, $|e|$ being the Lebesgue measure of the set $e$. If $1<p<q<+\infty$, the operator $A$ is a bounded operator from $L_p$ to $L_q$, and $\mathfrak Q$ is the set of all harmonic segments, then there exists a constant $C(p,q,n)$ such that
$$ C\sup_{e\in\mathfrak Q}\frac{1}{|e|^{1/p-1/q}} \biggl|\,\int_e K(x)\,dx\biggr|\leq\|A\|_{L_p\to L_q}. $$
Received: 01.04.1997
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: E. D. Nursultanov, K. S. Saidahmetov, “On lower bound of the norm of integral convolution operator”, Fundam. Prikl. Mat., 8:1 (2002), 141–150
Citation in format AMSBIB
\Bibitem{NurSai02}
\by E.~D.~Nursultanov, K.~S.~Saidahmetov
\paper On lower bound of the norm of integral convolution operator
\jour Fundam. Prikl. Mat.
\yr 2002
\vol 8
\issue 1
\pages 141--150
\mathnet{http://mi.mathnet.ru/fpm638}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1920443}
\zmath{https://zbmath.org/?q=an:1050.47046}
Linking options:
  • https://www.mathnet.ru/eng/fpm638
  • https://www.mathnet.ru/eng/fpm/v8/i1/p141
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:652
    Full-text PDF :226
    References:45
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024