|
Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 301–305
(Mi fpm637)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Short communications
On the computing of the eigenvalues of the Orr–Sommerfeld problem
M. I. Neiman-Zade, A. A. Shkalikov M. V. Lomonosov Moscow State University
Abstract:
The paper deals with the Orr–Sommerfeld problem
\begin{align*}
{} & \{(iR)^{-1}M^2-\alpha[q(x)M-q''(x)]\}y=-\lambda My,\\
&y(\pm 1)=y'(\pm1)=0,
\end{align*}
where $M=d^2/dx^2-\alpha^2$, $q(x)$ is the velocity profile,
$R$ and $\alpha$ are Reynolds and wave numbers, respectively.
We approve the Galerkin method to compute the eigenvalues
of this problem provided that the basis for the method consists of the
eigenfunctions of the operator $M^2$.
Received: 01.11.2001
Citation:
M. I. Neiman-Zade, A. A. Shkalikov, “On the computing of the eigenvalues of the Orr–Sommerfeld problem”, Fundam. Prikl. Mat., 8:1 (2002), 301–305
Linking options:
https://www.mathnet.ru/eng/fpm637 https://www.mathnet.ru/eng/fpm/v8/i1/p301
|
Statistics & downloads: |
Abstract page: | 627 | Full-text PDF : | 184 | References: | 65 | First page: | 2 |
|