|
Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 85–96
(Mi fpm633)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the sum of squares of five prime numbers one of which belongs to an arithmetic progression
M. B. Laportaa, D. I. Tolevb a Complesso Universitario di Monte S. Angelo
b Plovdiv University "Paisii Hiledarski"
Abstract:
We study the equation
$$
N=p_1^2+p_2^2+p_3^2+p_4^2+p_5^2,
$$
where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are prime numbers, $p_1+2\equiv0\pmod{k}$, $(k,2)=1$, and $N\equiv5\pmod{24}$.
Received: 01.01.1998
Citation:
M. B. Laporta, D. I. Tolev, “On the sum of squares of five prime numbers one of which belongs to an arithmetic progression”, Fundam. Prikl. Mat., 8:1 (2002), 85–96
Linking options:
https://www.mathnet.ru/eng/fpm633 https://www.mathnet.ru/eng/fpm/v8/i1/p85
|
Statistics & downloads: |
Abstract page: | 406 | Full-text PDF : | 150 | References: | 51 | First page: | 2 |
|