Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 1–16 (Mi fpm624)  

This article is cited in 4 scientific papers (total in 4 papers)

Splitting of perturbated differential operators with unbounded operator coefficients

A. G. Baskakov

Voronezh State University
Full-text PDF (767 kB) Citations (4)
References:
Abstract: We obtain some theorems on splitting of differential operators of the form
$$ \mathcal L=\frac{d}{dt}-A_0-BA_0^\nu\colon\, D(\mathcal L)\subset C(\mathbb R,\mathcal Y)\to C(\mathbb R,\mathcal Y) $$
acting in the Banach space $C(\mathbb R,\mathcal Y)$ of continuous and bounded functions defined on real axis $\mathbb R$ with values in the Banach space $\mathcal Y$. The linear operator $A_0\colon\,D(A_0)\subset\mathcal Y\to\mathcal Y$ is the generating operator of a strongly continuous semigroup of operators and its spectrum does not intersect the imaginary axis $i\mathbb R$. Here $A_0^\nu$, $\nu\in[0,1)$, is a fractional power of $A_0$ and $B\colon\,C(\mathbb R,\mathcal Y)\to C(\mathbb R,\mathcal Y)$ is a bounded linear operator.
Received: 01.03.2000
Bibliographic databases:
UDC: 517.983.28+517.928
Language: Russian
Citation: A. G. Baskakov, “Splitting of perturbated differential operators with unbounded operator coefficients”, Fundam. Prikl. Mat., 8:1 (2002), 1–16
Citation in format AMSBIB
\Bibitem{Bas02}
\by A.~G.~Baskakov
\paper Splitting of perturbated differential operators with unbounded operator coefficients
\jour Fundam. Prikl. Mat.
\yr 2002
\vol 8
\issue 1
\pages 1--16
\mathnet{http://mi.mathnet.ru/fpm624}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1920433}
\zmath{https://zbmath.org/?q=an:1056.47030}
Linking options:
  • https://www.mathnet.ru/eng/fpm624
  • https://www.mathnet.ru/eng/fpm/v8/i1/p1
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:630
    Full-text PDF :224
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024