|
Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 307–312
(Mi fpm623)
|
|
|
|
Short communications
$A^{\land}$-integration of Fourier transformations
Anter Ali Alsayad M. V. Lomonosov Moscow State University
Abstract:
The following theorems are proved.
Theorem 1. Let $f$ be a function of bounded variation on $\mathbb R$, $f(x)\to0$ ($x\to\pm\infty$), and $\varphi\in L(\mathbb R)$ be a bounded function. Then
$$
(A^{\land})\!\int\limits_{\mathbb R}\hat f(x)\bar{\hat\varphi}(x)\,dx
=(L)\!\int\limits_{\mathbb R}f(x)\bar\varphi(x)\,dx.
$$
Theorem 2. Let $f(x)=\sum\limits_{n=-\infty}^{+\infty}\alpha_ke^{ikx}$, where $\alpha_k\in\mathbb C$, $\{\alpha_k\}$ is a sequence with bounded variation, $\alpha_k\to0$ ($k\to\pm\infty$), and let $g(x)=\sum\limits_{j=-\infty}^{+\infty} \beta_j e^{ijx}$, where $\sum\limits_{j=-\infty}^{+\infty}|\beta_j|<\infty$. Then
$$
(A)\!\int\limits_{0}^{2\pi}f(x)\bar g(x)\,dx
=\sum_{m=-\infty}^{+\infty}\alpha_m\bar\beta_m
$$
and
$$
(A)\!\int\limits_{0}^{2\pi}f(x)g(x)\,dx
=\sum_{m=-\infty}^{+\infty}\alpha_m\beta_{-m}.
$$
Received: 01.06.1997
Citation:
Anter Ali Alsayad, “$A^{\land}$-integration of Fourier transformations”, Fundam. Prikl. Mat., 8:1 (2002), 307–312
Linking options:
https://www.mathnet.ru/eng/fpm623 https://www.mathnet.ru/eng/fpm/v8/i1/p307
|
Statistics & downloads: |
Abstract page: | 422 | Full-text PDF : | 114 | References: | 72 | First page: | 1 |
|