Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 307–312 (Mi fpm623)  

Short communications

$A^{\land}$-integration of Fourier transformations

Anter Ali Alsayad

M. V. Lomonosov Moscow State University
References:
Abstract: The following theorems are proved.
Theorem 1. Let $f$ be a function of bounded variation on $\mathbb R$, $f(x)\to0$ ($x\to\pm\infty$), and $\varphi\in L(\mathbb R)$ be a bounded function. Then
$$ (A^{\land})\!\int\limits_{\mathbb R}\hat f(x)\bar{\hat\varphi}(x)\,dx =(L)\!\int\limits_{\mathbb R}f(x)\bar\varphi(x)\,dx. $$

Theorem 2. Let $f(x)=\sum\limits_{n=-\infty}^{+\infty}\alpha_ke^{ikx}$, where $\alpha_k\in\mathbb C$, $\{\alpha_k\}$ is a sequence with bounded variation, $\alpha_k\to0$ ($k\to\pm\infty$), and let $g(x)=\sum\limits_{j=-\infty}^{+\infty} \beta_j e^{ijx}$, where $\sum\limits_{j=-\infty}^{+\infty}|\beta_j|<\infty$. Then
$$ (A)\!\int\limits_{0}^{2\pi}f(x)\bar g(x)\,dx =\sum_{m=-\infty}^{+\infty}\alpha_m\bar\beta_m $$
and
$$ (A)\!\int\limits_{0}^{2\pi}f(x)g(x)\,dx =\sum_{m=-\infty}^{+\infty}\alpha_m\beta_{-m}. $$
Received: 01.06.1997
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: Anter Ali Alsayad, “$A^{\land}$-integration of Fourier transformations”, Fundam. Prikl. Mat., 8:1 (2002), 307–312
Citation in format AMSBIB
\Bibitem{Ant02}
\by Anter Ali Alsayad
\paper $A^{\land}$-integration of Fourier transformations
\jour Fundam. Prikl. Mat.
\yr 2002
\vol 8
\issue 1
\pages 307--312
\mathnet{http://mi.mathnet.ru/fpm623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1920455}
\zmath{https://zbmath.org/?q=an:1056.42007}
Linking options:
  • https://www.mathnet.ru/eng/fpm623
  • https://www.mathnet.ru/eng/fpm/v8/i1/p307
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :114
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024