Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 4, Pages 1227–1236 (Mi fpm609)  

Extension theorem for linear codes over finite quasi-Frobenius modules

I. L. Kheifets

M. V. Lomonosov Moscow State University
Abstract: F. J. MacWilliams proved an Extension theorem: Hamming isometries between linear codes over finite fields extend to monomial transformation. This result has been generalized by J. A. Wood who proved it for Frobenius rings. In this paper the Extension theorem for linear codes over a finite quasi-Frobenius module with commutative coefficient ring is proved. The main technique involves the description of quasi-Frobenius module in terms of character theory.
Received: 01.09.2001
Bibliographic databases:
UDC: 519.725+512.55
Language: Russian
Citation: I. L. Kheifets, “Extension theorem for linear codes over finite quasi-Frobenius modules”, Fundam. Prikl. Mat., 7:4 (2001), 1227–1236
Citation in format AMSBIB
\Bibitem{Khe01}
\by I.~L.~Kheifets
\paper Extension theorem for linear codes over finite quasi-Frobenius modules
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 4
\pages 1227--1236
\mathnet{http://mi.mathnet.ru/fpm609}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1896009}
\zmath{https://zbmath.org/?q=an:1026.94017}
Linking options:
  • https://www.mathnet.ru/eng/fpm609
  • https://www.mathnet.ru/eng/fpm/v7/i4/p1227
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :185
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024