Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 3, Pages 939–944 (Mi fpm605)  

Short communications

Local contracted semigroup rings

A. V. Zhuchin

Moscow State Institute of Steel and Alloys (Technological University)
Abstract: The local contracted semigroup rings $R_0S$ over non-radical rings $R$ ($\overline R=R/J(R)\ne\{0\}$) are under consideration. The following main statement is proved. Let $R$ be a ring, $\overline R\ne\{0\}$, $S$ be a semigroup with zero. The ring $R_0S$ is local if and only if: (i) there exists a nil ideal $N\subseteq S$ such that $S/N\cong T^0$ is a semigroup $T$ (without zero) with adjoint zero; (ii) $RT$ is local, $R_0N$ is radical.
Received: 01.09.1996
Bibliographic databases:
Document Type: Article
UDC: 512.552.7
Language: Russian
Citation: A. V. Zhuchin, “Local contracted semigroup rings”, Fundam. Prikl. Mat., 7:3 (2001), 939–944
Citation in format AMSBIB
\Bibitem{Zhu01}
\by A.~V.~Zhuchin
\paper Local contracted semigroup rings
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 3
\pages 939--944
\mathnet{http://mi.mathnet.ru/fpm605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879310}
\zmath{https://zbmath.org/?q=an:1014.16029}
Linking options:
  • https://www.mathnet.ru/eng/fpm605
  • https://www.mathnet.ru/eng/fpm/v7/i3/p939
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024