Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 1, Pages 101–107 (Mi fpm6)  

Multiplicative orders on terms

E. V. Gorbatov

M. V. Lomonosov Moscow State University
References:
Abstract: Let $R$ be a commutative ring with identity. Any order on terms of the polynomial algebra $R[x_1,\dots,x_k]$ induces in a natural way the notion of a leading term. An order on terms is called multiplicative if and only if the leading term of a product equals the product of leading terms. In this paper, we present a procedure for the construction of multiplicative orders. We obtain some characterizations of rings for which such orders exist. We give conditions sufficient for the existence of such orders.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 4, Pages 517–521
DOI: https://doi.org/10.1007/s10958-008-9083-6
Bibliographic databases:
UDC: 512.714+512.536
Language: Russian
Citation: E. V. Gorbatov, “Multiplicative orders on terms”, Fundam. Prikl. Mat., 13:1 (2007), 101–107; J. Math. Sci., 152:4 (2008), 517–521
Citation in format AMSBIB
\Bibitem{Gor07}
\by E.~V.~Gorbatov
\paper Multiplicative orders on terms
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 1
\pages 101--107
\mathnet{http://mi.mathnet.ru/fpm6}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322961}
\zmath{https://zbmath.org/?q=an:1146.13014}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 4
\pages 517--521
\crossref{https://doi.org/10.1007/s10958-008-9083-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749086625}
Linking options:
  • https://www.mathnet.ru/eng/fpm6
  • https://www.mathnet.ru/eng/fpm/v13/i1/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025