Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 1, Pages 315–317 (Mi fpm59)  

This article is cited in 5 scientific papers (total in 5 papers)

Short communications

Regular rings of Laurent series

K. Sonin

M. V. Lomonosov Moscow State University
Full-text PDF (127 kB) Citations (5)
References:
Abstract: The following conditions for the ring $A((x))$ of Laurent series over a ring $A$ are equivalent: 1) $A((x))$ is a regular ring; 2) $A((x))$ is a semisimple Artinian ring; 3) $A$ is a semisimple Artinian ring.
Received: 01.01.1995
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: K. Sonin, “Regular rings of Laurent series”, Fundam. Prikl. Mat., 1:1 (1995), 315–317
Citation in format AMSBIB
\Bibitem{Son95}
\by K.~Sonin
\paper Regular rings of Laurent series
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 1
\pages 315--317
\mathnet{http://mi.mathnet.ru/fpm59}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1789370}
\zmath{https://zbmath.org/?q=an:0867.16023}
Linking options:
  • https://www.mathnet.ru/eng/fpm59
  • https://www.mathnet.ru/eng/fpm/v1/i1/p315
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :192
    References:54
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024