Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 3, Pages 935–938 (Mi fpm589)  

Short communications

A new approach to Fourier method in mixed problem for one singular differential operator

V. V. Dubrovskii, E. M. Gugina

Magnitogorsk State University
Abstract: The article provides an evident example of a new approach to the substantiation of Fourier analysis for a singular differential equation in partial derivatives, whose solution is based on the orthogonal polynomial system of Legendre.
Received: 01.05.2001
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: V. V. Dubrovskii, E. M. Gugina, “A new approach to Fourier method in mixed problem for one singular differential operator”, Fundam. Prikl. Mat., 7:3 (2001), 935–938
Citation in format AMSBIB
\Bibitem{DubGug01}
\by V.~V.~Dubrovskii, E.~M.~Gugina
\paper A~new approach to Fourier method in mixed problem for one singular differential operator
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 3
\pages 935--938
\mathnet{http://mi.mathnet.ru/fpm589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879309}
\zmath{https://zbmath.org/?q=an:1049.35060}
Linking options:
  • https://www.mathnet.ru/eng/fpm589
  • https://www.mathnet.ru/eng/fpm/v7/i3/p935
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024