Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 3, Pages 683–698 (Mi fpm587)  

Schur pairs, non-commutative deformation of the Kadomtsev–Petviashvili hierarchy and skew differential operators

E. E. Demidov

CentreInvestSoft
Abstract: The concept of Schur pairs emerges naturally when the KP-hierarchy is treated geometrically as a dynamical system on an infinite-dimensional Grassmann manifold. On the other hand, these pairs classify the commutative subalgebras of differential operators. Analyzing these interrelations one can obtain a solution of the classical Schottky problem or a version of the Burchnall–Chaundy–Krichever correspondence. The article is devoted to a non-commutative analogue of the Schur pairs. The author has introduced the KP-hierarchy with non-commutative time space ($t_it_j=q_{ij}^{-1}t_jt_i$) and a non-commutative Grassmann manifold, which form a non-commutative formal dynamical system. The Schur pair $(A,F)$ consists of a subalgebra $A$ of pseudodifferential operators with non-commutative coefficients and a point $F$ of $\mathbf G$ such that $A$ stabilizes $F$. We obtain a transformation law for Schur pairs under non-commutative KP flows. A way of constructing differential operators from a given Schur pair is presented. The commutative subalgebras of differential operators of a special type are classified in terms of Schur pairs.
Received: 01.11.1997
Bibliographic databases:
UDC: 512.66
Language: Russian
Citation: E. E. Demidov, “Schur pairs, non-commutative deformation of the Kadomtsev–Petviashvili hierarchy and skew differential operators”, Fundam. Prikl. Mat., 7:3 (2001), 683–698
Citation in format AMSBIB
\Bibitem{Dem01}
\by E.~E.~Demidov
\paper Schur pairs, non-commutative deformation of the Kadomtsev--Petviashvili hierarchy and skew differential operators
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 3
\pages 683--698
\mathnet{http://mi.mathnet.ru/fpm587}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879291}
\zmath{https://zbmath.org/?q=an:1048.37057}
Linking options:
  • https://www.mathnet.ru/eng/fpm587
  • https://www.mathnet.ru/eng/fpm/v7/i3/p683
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025