Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 3, Pages 651–658 (Mi fpm584)  

This article is cited in 4 scientific papers (total in 4 papers)

The Nagata–Higman theorem for hemirings

I. I. Bogdanov

M. V. Lomonosov Moscow State University
Full-text PDF (348 kB) Citations (4)
Abstract: In this paper the hemirings (in general, with noncommutative addition) with the identity $x^n=0$ are studied. The main results are the following ones.
Theorem. If a $n!$-torsionfree general hemiring satisfies the identity $x^n=0$, then it is nilpotent. The estimates of the nilpotency index are equal for $n!$-torsionless rings and general hemirings.
Theorem. The estimates of the nilpotency index of $l$-generated rings and general hemirings with identity $x^n=0$ are equal.
The proof is based on the following lemma.
Lemma. If a general semiring $S$ satisfies the identity $x^n=0$, then $S^n$ is a ring.
Received: 01.09.2000
Bibliographic databases:
UDC: 512.558
Language: Russian
Citation: I. I. Bogdanov, “The Nagata–Higman theorem for hemirings”, Fundam. Prikl. Mat., 7:3 (2001), 651–658
Citation in format AMSBIB
\Bibitem{Bog01}
\by I.~I.~Bogdanov
\paper The Nagata--Higman theorem for hemirings
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 3
\pages 651--658
\mathnet{http://mi.mathnet.ru/fpm584}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879288}
\zmath{https://zbmath.org/?q=an:1014.16047}
Linking options:
  • https://www.mathnet.ru/eng/fpm584
  • https://www.mathnet.ru/eng/fpm/v7/i3/p651
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025