Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 3, Pages 637–650 (Mi fpm583)  

This article is cited in 1 scientific paper (total in 1 paper)

Projective resolutions of simple modules for a class of Frobenius algebras

O. I. Balashov, A. I. Generalov

Saint-Petersburg State University
Full-text PDF (609 kB) Citations (1)
Abstract: An infinite series of nongroup symmetric algebras $R_n$, $n\geqslant1$, is constructed as quotient algebras of a path algebra of a quiver. For these algebras, it is shown that minimal projective resolution of a simple module may be obtained as the total complex of a double complex of the same shape.
Received: 01.05.1998
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: O. I. Balashov, A. I. Generalov, “Projective resolutions of simple modules for a class of Frobenius algebras”, Fundam. Prikl. Mat., 7:3 (2001), 637–650
Citation in format AMSBIB
\Bibitem{BalGen01}
\by O.~I.~Balashov, A.~I.~Generalov
\paper Projective resolutions of simple modules for a~class of Frobenius algebras
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 3
\pages 637--650
\mathnet{http://mi.mathnet.ru/fpm583}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879287}
\zmath{https://zbmath.org/?q=an:1014.16010}
Linking options:
  • https://www.mathnet.ru/eng/fpm583
  • https://www.mathnet.ru/eng/fpm/v7/i3/p637
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :136
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024