Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 3, Pages 925–930 (Mi fpm581)  

This article is cited in 2 scientific papers (total in 2 papers)

Short communications

An approximation modulo $s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the CAR algebra

G. G. Amosov

Moscow Institute of Physics and Technology
Full-text PDF (329 kB) Citations (2)
Abstract: We investigate the possibility of approximation modulo $s_2$ of isometrical operators in Hilbert space. Further we give the criterion of innerness of quasifree automorphisms of hyperfinfite factors $\mathcal M$ of type $\mathrm{II}_1$ and type $\mathrm{III}_{\lambda }$ generated by the representations of the algebra of canonical anticommutation relations (CAR). The results are used to describe cocycle conjugacy classes of quasifree shifts on hyperfinite factors of $\mathcal M$.
Received: 01.02.1998
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: G. G. Amosov, “An approximation modulo $s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the CAR algebra”, Fundam. Prikl. Mat., 7:3 (2001), 925–930
Citation in format AMSBIB
\Bibitem{Amo01}
\by G.~G.~Amosov
\paper An~approximation modulo~$s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the~CAR algebra
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 3
\pages 925--930
\mathnet{http://mi.mathnet.ru/fpm581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879307}
\zmath{https://zbmath.org/?q=an:1042.46037}
Linking options:
  • https://www.mathnet.ru/eng/fpm581
  • https://www.mathnet.ru/eng/fpm/v7/i3/p925
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :89
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024