Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 2, Pages 631–634 (Mi fpm576)  

Short communications

Noetherianness of convolution operators with coefficients on quotient groups

B. J. Steinberg

Rostov State University
Abstract: In the paper we study Noetherianness of convolution operators on the groups of slow growth with absolutely summable kernel and coefficients in a new class. The coefficients are the superpositions of canonic quotient-homomorphisms and functions on quotient groups. The key step is the construction of a special compactification of the topological group.
Received: 01.12.1996
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: B. J. Steinberg, “Noetherianness of convolution operators with coefficients on quotient groups”, Fundam. Prikl. Mat., 7:2 (2001), 631–634
Citation in format AMSBIB
\Bibitem{Ste01}
\by B.~J.~Steinberg
\paper Noetherianness of convolution operators with coefficients on quotient groups
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 2
\pages 631--634
\mathnet{http://mi.mathnet.ru/fpm576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1866472}
\zmath{https://zbmath.org/?q=an:1058.47501}
Linking options:
  • https://www.mathnet.ru/eng/fpm576
  • https://www.mathnet.ru/eng/fpm/v7/i2/p631
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024