Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 2, Pages 621–625 (Mi fpm575)  

Short communications

About connections induced on surfaces of the projective space by the Bortolotti clothing

S. I. Sokolovskaya

Sigma
Abstract: The present paper introduces the notion of the Bortolotti connection in the principal fiber space $\hat H(S(\tilde M_{n,m}^{n-m}),\dot G_m)$, the notion of the pseudosurface, associated with subsurface, and the Bortolotti clothing of a pseudosurface, which generates the described connection. The paper singles out a special case of the clothing, namely, the Bortolotti clothing in the proper sense. It is demonstrated that the Bortolotti clothing in the proper sense of the pseudosurface, associated with a subsurface $\Sigma_m$, induces the Bortolotti clothing of the subsurface $\Sigma_m$ itself. The paper sets up and solves the problem of immersion of the Bortolotti connection in an $N$-dimensional projective space. It is proved that the immersion is possible, if $N\geq mn(n-m+1)+m(m-1)/2$.
Received: 01.04.2000
Bibliographic databases:
Document Type: Article
UDC: 514.762
Language: Russian
Citation: S. I. Sokolovskaya, “About connections induced on surfaces of the projective space by the Bortolotti clothing”, Fundam. Prikl. Mat., 7:2 (2001), 621–625
Citation in format AMSBIB
\Bibitem{Sok01}
\by S.~I.~Sokolovskaya
\paper About connections induced on surfaces of the~projective space by the~Bortolotti clothing
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 2
\pages 621--625
\mathnet{http://mi.mathnet.ru/fpm575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1866470}
\zmath{https://zbmath.org/?q=an:1056.53013}
Linking options:
  • https://www.mathnet.ru/eng/fpm575
  • https://www.mathnet.ru/eng/fpm/v7/i2/p621
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024