Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 2, Pages 583–596 (Mi fpm573)  

Spectral problems associated with stability of fluid motion in an annulus in a magnetic field

I. A. Sheipak

M. V. Lomonosov Moscow State University
Abstract: This paper investigates spectral and basis property of operator pencil connected with the problem of stability of an axisymmetrically perturbed fluid motion in vertical annulus in the presence of vertical magnetic field. It is proved that eigenfunctions of this pencil form a Bari basis in the corresponding Hilbert space.
Received: 01.08.1996
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: I. A. Sheipak, “Spectral problems associated with stability of fluid motion in an annulus in a magnetic field”, Fundam. Prikl. Mat., 7:2 (2001), 583–596
Citation in format AMSBIB
\Bibitem{She01}
\by I.~A.~Sheipak
\paper Spectral problems associated with stability of fluid motion in an annulus in a magnetic field
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 2
\pages 583--596
\mathnet{http://mi.mathnet.ru/fpm573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1866476}
\zmath{https://zbmath.org/?q=an:1050.35090}
Linking options:
  • https://www.mathnet.ru/eng/fpm573
  • https://www.mathnet.ru/eng/fpm/v7/i2/p583
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024