Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 2, Pages 423–431 (Mi fpm567)  

On a class of complete intersection Calabi–Yau manifolds in toric manifolds

A. V. Krotov, V. V. Rabotin

Krasnoyarsk State University
Abstract: We consider the family of smooth $n$-dimensional toric manifolds generalizing the family of Hirzebruch surfaces to dimension $n$. We analyze conditions under which there exists a Calabi–Yau complete intersection of two ample hypersurfaces in these manifolds. This turns out to be possible only if the toric manifold is the product of projective spaces. If one of the hypersurfaces is not ample then we find Calabi–Yau complete intersection of two hypersurfaces in Fano manifolds of the given family.
Received: 01.02.1997
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: A. V. Krotov, V. V. Rabotin, “On a class of complete intersection Calabi–Yau manifolds in toric manifolds”, Fundam. Prikl. Mat., 7:2 (2001), 423–431
Citation in format AMSBIB
\Bibitem{KroRab01}
\by A.~V.~Krotov, V.~V.~Rabotin
\paper On a class of complete intersection Calabi--Yau manifolds in toric manifolds
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 2
\pages 423--431
\mathnet{http://mi.mathnet.ru/fpm567}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1866465}
\zmath{https://zbmath.org/?q=an:1051.14058}
Linking options:
  • https://www.mathnet.ru/eng/fpm567
  • https://www.mathnet.ru/eng/fpm/v7/i2/p423
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :181
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024