Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 1, Pages 159–171 (Mi fpm557)  

This article is cited in 1 scientific paper (total in 1 paper)

Maximum size of a planar graph ($\Delta=3$, $D=3$)

S. A. Tishchenko

School 2
Full-text PDF (513 kB) Citations (1)
Abstract: The problem of maximum size of a graph of diameter 3 and maximum degree 3 as a function of its Euler characteristics is studied. The negative solution of an Erdös problem is obtained. A new approach to such problems is proposed which consists in counting the paths between different pairs of vertices in a graph.
Received: 01.04.1999
Bibliographic databases:
UDC: 519.172.2+519.173+519.177
Language: Russian
Citation: S. A. Tishchenko, “Maximum size of a planar graph ($\Delta=3$, $D=3$)”, Fundam. Prikl. Mat., 7:1 (2001), 159–171
Citation in format AMSBIB
\Bibitem{Tis01}
\by S.~A.~Tishchenko
\paper Maximum size of a planar graph ($\Delta=3$, $D=3$)
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 1
\pages 159--171
\mathnet{http://mi.mathnet.ru/fpm557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1845069}
\zmath{https://zbmath.org/?q=an:1009.05053}
Linking options:
  • https://www.mathnet.ru/eng/fpm557
  • https://www.mathnet.ru/eng/fpm/v7/i1/p159
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024