Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 1, Pages 235–256 (Mi fpm541)  

Taylor power series of algebraic functions over fields of positive characteristics

A. A. Chilikov

M. V. Lomonosov Moscow State University
Abstract: In this work we show algorithmical solvability for the problem of calculation of the Taylor power series for an algebraic function over a field of positive characteristics. An efficient algorithm for construction of a finite automaton solving this problem is given.
Received: 01.10.2000
Bibliographic databases:
UDC: 512.5+511
Language: Russian
Citation: A. A. Chilikov, “Taylor power series of algebraic functions over fields of positive characteristics”, Fundam. Prikl. Mat., 7:1 (2001), 235–256
Citation in format AMSBIB
\Bibitem{Chi01}
\by A.~A.~Chilikov
\paper Taylor power series of algebraic functions over fields of positive characteristics
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 1
\pages 235--256
\mathnet{http://mi.mathnet.ru/fpm541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1845072}
\zmath{https://zbmath.org/?q=an:1016.12011}
Linking options:
  • https://www.mathnet.ru/eng/fpm541
  • https://www.mathnet.ru/eng/fpm/v7/i1/p235
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :316
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024