Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2000, Volume 6, Issue 4, Pages 1229–1238 (Mi fpm538)  

This article is cited in 6 scientific papers (total in 6 papers)

Algorithms to realize the rank and primitivity of systems of elements in free non-associative algebras

K. Champagnier

M. V. Lomonosov Moscow State University
Full-text PDF (413 kB) Citations (6)
Abstract: A set of nonzero pairwise distinct elements of a free algebra $F$ is said to be a primitive system of elements if it is a subset of some set of free generators of $F$. The rank of $U\subset F$ is the smallest number of free generators of $F$ on which elements of the set $\phi(U)$ depend, where $\phi$ runs through the automorphism group of $F$ (in other words, it is the smallest rank of a free factor of $F$ containing $U$). We consider free non-associative algebras, free commutative non-associative algebras, and free anti-commutative non-associative algebras. We construct the algorithm 1 to realize the rank of a homogeneous element of these free algebras. The algorithm 2 for the general case is presented. The problem is decomposed into homogeneous parts. Next, algorithm 3 constructs an automorphism realizing the rank of a system of elements reducing it to the case of one element. Finally, algorithms 4 and 5 deal with a system of primitive elements. The algorithm 4 presents an automorphism converting it into a part of a system of free generators of the algebra. And the algorithm 5 constructs a complement of a primitive system with respect to a free generating set of the whole free algebra.
Received: 01.01.2000
Bibliographic databases:
UDC: 512.554
Language: Russian
Citation: K. Champagnier, “Algorithms to realize the rank and primitivity of systems of elements in free non-associative algebras”, Fundam. Prikl. Mat., 6:4 (2000), 1229–1238
Citation in format AMSBIB
\Bibitem{Cha00}
\by K.~Champagnier
\paper Algorithms to realize the~rank and primitivity of systems of elements in free non-associative algebras
\jour Fundam. Prikl. Mat.
\yr 2000
\vol 6
\issue 4
\pages 1229--1238
\mathnet{http://mi.mathnet.ru/fpm538}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1813022}
\zmath{https://zbmath.org/?q=an:1087.17502}
Linking options:
  • https://www.mathnet.ru/eng/fpm538
  • https://www.mathnet.ru/eng/fpm/v6/i4/p1229
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :107
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024