Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2000, Volume 6, Issue 4, Pages 977–984 (Mi fpm520)  

This article is cited in 2 scientific papers (total in 2 papers)

On tensor products of strict $C^*$-algebras

O. Yu. Aristov

Obninsk State Technical University for Nuclear Power Engineering
Full-text PDF (357 kB) Citations (2)
Abstract: We consider tensor products of $C^*$-algebras with weakly continuous multiplication. Some characterizations of such algebras in terms of weak tensor product and spatial $C^*$-tensor product are given. As a consequence we prove a new criterion of the commutativity of a $C^*$-algebra.
Received: 01.04.1997
Bibliographic databases:
UDC: 517.986.32
Language: Russian
Citation: O. Yu. Aristov, “On tensor products of strict $C^*$-algebras”, Fundam. Prikl. Mat., 6:4 (2000), 977–984
Citation in format AMSBIB
\Bibitem{Ari00}
\by O.~Yu.~Aristov
\paper On tensor products of strict $C^*$-algebras
\jour Fundam. Prikl. Mat.
\yr 2000
\vol 6
\issue 4
\pages 977--984
\mathnet{http://mi.mathnet.ru/fpm520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1813006}
\zmath{https://zbmath.org/?q=an:1057.46045}
Linking options:
  • https://www.mathnet.ru/eng/fpm520
  • https://www.mathnet.ru/eng/fpm/v6/i4/p977
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024