Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 1, Pages 147–159 (Mi fpm48)  

This article is cited in 3 scientific papers (total in 3 papers)

Property of the spatial projectivity in the class of CSL-algebras with atomic commutant

Yu. O. Golovin

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Full-text PDF (702 kB) Citations (3)
References:
Abstract: This work continues to study spatial homological properties of, generally speaking, non-selfadjoint, reflexive operator algebras in a Hilbert space $H$. A “lattice” criterion of spatial projectivity of an algebra $A$ (i.e. the projectivity of $H$ as left Banach $A$-module) is obtained in the class of indecomposable CSL-algebras: the existence of immediate predesessor of $H$ as element of the lattice of invariant subspaces. Also, the direct product of indecomposable CSL-algebras $A_\alpha$, $\alpha\in\Lambda$, is a spatial projective algebra iff the algebra $A_\alpha$ is spatial projective for every $\alpha$.
Received: 01.01.1995
Bibliographic databases:
Language: Russian
Citation: Yu. O. Golovin, “Property of the spatial projectivity in the class of CSL-algebras with atomic commutant”, Fundam. Prikl. Mat., 1:1 (1995), 147–159
Citation in format AMSBIB
\Bibitem{Gol95}
\by Yu.~O.~Golovin
\paper Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 1
\pages 147--159
\mathnet{http://mi.mathnet.ru/fpm48}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1789356}
\zmath{https://zbmath.org/?q=an:0877.47027}
Linking options:
  • https://www.mathnet.ru/eng/fpm48
  • https://www.mathnet.ru/eng/fpm/v1/i1/p147
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024