|
Fundamentalnaya i Prikladnaya Matematika, 2000, Volume 6, Issue 1, Pages 207–223
(Mi fpm467)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
About some approach to the theory of Nikolski\v{i}–Besov spaces on homogeneous manifolds
S. S. Platonov Petrozavodsk State University
Abstract:
Let $M$ be a compact symmetric space of rank 1. We have defined the Nikolski\v{i}–Besov function classes $B_{p,\theta}^r(M)$, $r>0$, $1\leq\theta\leq\infty$, $1\leq p\leq\infty$, and we have obtained a constructive description of these classes in terms of the best approximations of functions $f\in L_p(M)$ by the spherical polynomials on $M$.
Received: 01.02.1996
Citation:
S. S. Platonov, “About some approach to the theory of Nikolski\v{i}–Besov spaces on homogeneous manifolds”, Fundam. Prikl. Mat., 6:1 (2000), 207–223
Linking options:
https://www.mathnet.ru/eng/fpm467 https://www.mathnet.ru/eng/fpm/v6/i1/p207
|
Statistics & downloads: |
Abstract page: | 261 | Full-text PDF : | 145 | First page: | 2 |
|