|
Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 4, Pages 1179–1189
(Mi fpm443)
|
|
|
|
Formally integrable Mizohata systems of codimension 1
I. B. Tabov Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Abstract:
In the paper we prove that any formally integrable Mizohata system of codimension one
$$\left \{
\begin{array}{@{}l@{}}
\partial_1u=\epsilon_1ix^1\partial_nu+f_1,
\\
\partial_2u=\epsilon_2ix^2\partial_nu+f_2,
\\
\dots \dots \dots
\\
\partial_{n-1}u=\epsilon_{n-1}ix^{n-1}\partial_nu+f_{n-1}
\end{array}
\right.
$$
can be reduced by a local change of the variables to a system of the form
$$\left \{
\begin{array}{@{}l@{}}
\partial_1v^1+\partial_2v^2=\psi _1,
\\
\partial_1v^2-\partial_2v^1=\psi _2
\end{array}
\right.
$$
and, consequently, to Poisson's equation in the plane.
Received: 01.04.1996
Citation:
I. B. Tabov, “Formally integrable Mizohata systems of codimension 1”, Fundam. Prikl. Mat., 5:4 (1999), 1179–1189
Linking options:
https://www.mathnet.ru/eng/fpm443 https://www.mathnet.ru/eng/fpm/v5/i4/p1179
|
Statistics & downloads: |
Abstract page: | 171 | Full-text PDF : | 91 | First page: | 2 |
|