Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 4, Pages 1191–1197 (Mi fpm439)  

On logical description of geometric figures

A. A. Shakirov

M. V. Lomonosov Moscow State University
Abstract: This paper deals with the problem of equivalence of predicate logic formulas, used for description of geometric objects, constructed from a given set of basic figures by set-theoretic operations $\cap,\cup,\overline{\phantom{a}}$. A finite complete system of identities is obtained for a finite basis in the class of the above formulas with finite number of variables.
Received: 01.02.1996
Bibliographic databases:
UDC: 519.717
Language: Russian
Citation: A. A. Shakirov, “On logical description of geometric figures”, Fundam. Prikl. Mat., 5:4 (1999), 1191–1197
Citation in format AMSBIB
\Bibitem{Sha99}
\by A.~A.~Shakirov
\paper On logical description of geometric figures
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 4
\pages 1191--1197
\mathnet{http://mi.mathnet.ru/fpm439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1782961}
\zmath{https://zbmath.org/?q=an:0960.03005}
Linking options:
  • https://www.mathnet.ru/eng/fpm439
  • https://www.mathnet.ru/eng/fpm/v5/i4/p1191
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:505
    Full-text PDF :145
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024