|
Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 4, Pages 1015–1025
(Mi fpm430)
|
|
|
|
Central polynomials for adjoint representations of simple Lie algebras exist
A. A. Kagarmanova, Yu. P. Razmyslovb a Institute for High Energy Physics
b M. V. Lomonosov Moscow State University
Abstract:
Yu. P. Razmyslov has proved that for any finite dimensional reductive Lie algebra $\mathcal G$ over a field $K$ of zero characteristic ($\dim_{K}\mathcal G=m$) and for its arbitrary associative enveloping algebra $U$ with non-empty center $Z(U)$ there exists a central polynomial which is multilinear and skew-symmetric in $k$ sets of $m$ variables for a certain positive integer $k$. This result is now proved for adjoint representations of classical simple Lie algebras of type $A_s,B_s,C_s,D_s$ and matrix Lie algebra $M_n$ over fields of positive characteristic.
Received: 01.05.1997
Citation:
A. A. Kagarmanov, Yu. P. Razmyslov, “Central polynomials for adjoint representations of simple Lie algebras exist”, Fundam. Prikl. Mat., 5:4 (1999), 1015–1025
Linking options:
https://www.mathnet.ru/eng/fpm430 https://www.mathnet.ru/eng/fpm/v5/i4/p1015
|
Statistics & downloads: |
Abstract page: | 261 | Full-text PDF : | 138 | First page: | 2 |
|