Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 4, Pages 1015–1025 (Mi fpm430)  

Central polynomials for adjoint representations of simple Lie algebras exist

A. A. Kagarmanova, Yu. P. Razmyslovb

a Institute for High Energy Physics
b M. V. Lomonosov Moscow State University
Abstract: Yu. P. Razmyslov has proved that for any finite dimensional reductive Lie algebra $\mathcal G$ over a field $K$ of zero characteristic ($\dim_{K}\mathcal G=m$) and for its arbitrary associative enveloping algebra $U$ with non-empty center $Z(U)$ there exists a central polynomial which is multilinear and skew-symmetric in $k$ sets of $m$ variables for a certain positive integer $k$. This result is now proved for adjoint representations of classical simple Lie algebras of type $A_s,B_s,C_s,D_s$ and matrix Lie algebra $M_n$ over fields of positive characteristic.
Received: 01.05.1997
Bibliographic databases:
UDC: 512.554.31+512.554.342
Language: Russian
Citation: A. A. Kagarmanov, Yu. P. Razmyslov, “Central polynomials for adjoint representations of simple Lie algebras exist”, Fundam. Prikl. Mat., 5:4 (1999), 1015–1025
Citation in format AMSBIB
\Bibitem{KagRaz99}
\by A.~A.~Kagarmanov, Yu.~P.~Razmyslov
\paper Central polynomials for adjoint representations of simple Lie algebras exist
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 4
\pages 1015--1025
\mathnet{http://mi.mathnet.ru/fpm430}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1782952}
\zmath{https://zbmath.org/?q=an:1067.17503}
Linking options:
  • https://www.mathnet.ru/eng/fpm430
  • https://www.mathnet.ru/eng/fpm/v5/i4/p1015
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :138
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024