|
Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 1, Pages 71–79
(Mi fpm43)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Inverse problems of symbolic dimamics
A. Ya. Belov, G. V. Kondakov House of scientific and technical work of youth
Abstract:
Let $P(n)$ be a polynomial with irrational greatest coefficient. Let also a superword $W$ $(W=(w_n),n\in\mathbb N)$ be the sequence of first binary digits of $\{P(n)\}$, i.e. $w_n=[2\{P(n)\}]$, and $T(k)$ be the number of different subwords of $W$ whose length is equal to $k$. The main result of the paper is the following:
Theorem 1.1.
For any $n$ there exists a polynomial $Q(k)$ such that if $deg(P)=n$, then $T(k)=Q(k)$ for all sufficiently large $k$.
Received: 01.01.1995
Citation:
A. Ya. Belov, G. V. Kondakov, “Inverse problems of symbolic dimamics”, Fundam. Prikl. Mat., 1:1 (1995), 71–79
Linking options:
https://www.mathnet.ru/eng/fpm43 https://www.mathnet.ru/eng/fpm/v1/i1/p71
|
|